On a Special Class of Lattices, Computational Problems, and Hash Functions

نویسنده

  • Kevin Schelten
چکیده

Acknowledgements I would like to thank the following people. • Prof. Dr. Johannes Buchmann, for a fascinating thesis. • Dipl.-Math. Richard Lindner and Dipl.-Inf. Markus Rückert, for inspiring scientific guidance. Warranty I hereby warrant that the content of this thesis is the direct result of my own work and that any use made in it of published or unpublished material is fully and correctly referenced.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized Compact Knapsacks Are Collision Resistant

The generalized knapsack problem is the following: given m random elements a1, . . . , am in a ring R, and a target t ∈ R, find z1, . . . , zm ∈ D such that P aizi = t, where D is some fixed subset of R. In (Micciancio, FOCS 2002) it was proved that for appropriate choices of R and D, solving the generalized compact knapsack problem on the average is as hard as solving certain worst-case proble...

متن کامل

A New Ring-Based SPHF and PAKE Protocol On Ideal Lattices

emph{ Smooth Projective Hash Functions } ( SPHFs ) as a specific pattern of zero knowledge proof system are fundamental tools to build many efficient cryptographic schemes and protocols. As an application of SPHFs, emph { Password - Based Authenticated Key Exchange } ( PAKE ) protocol is well-studied area in the last few years. In 2009, Katz and Vaikuntanathan described the first lattice-based ...

متن کامل

Time-Discontinuous Finite Element Analysis of Two-Dimensional Elastodynamic Problems using Complex Fourier Shape Functions

This paper reformulates a time-discontinuous finite element method (TD-FEM) based on a new class of shape functions, called complex Fourier hereafter, for solving two-dimensional elastodynamic problems. These shape functions, which are derived from their corresponding radial basis functions, have some advantages such as the satisfaction of exponential and trigonometric function fields in comple...

متن کامل

On Ideal Lattices, Gr\"obner Bases and Generalized Hash Functions

In this paper, we draw connections between ideal lattices and multivariate polynomial rings over integers using Gröbner bases. Univariate ideal lattices are ideals in the residue class ring, Z[x]/〈f〉 (here f is a monic polynomial) and cryptographic primitives have been built based on these objects. Ideal lattices in the univariate case are generalizations of cyclic lattices. We introduce the no...

متن کامل

Frankl's Conjecture for a subclass of semimodular lattices

 In this paper, we prove Frankl's Conjecture for an upper semimodular lattice $L$ such that $|J(L)setminus A(L)| leq 3$, where $J(L)$ and $A(L)$ are the set of join-irreducible elements and the set of atoms respectively. It is known that the class of planar lattices is contained in the class of dismantlable lattices and the class of dismantlable lattices is contained in the class of lattices ha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008